Fundamental theorems
$L \cdot H \cdot L=$ R. H L $L=f(x$.
Rolle's Theorem:
If $f(x)$ is

1) a continuous function on the interval [abb]
2) differentiable on the open interval (a, b)

3) and $f(a)=f(b)$,
then there is at least one value c of x in the interval (a, b) such that $f^{\prime}(c)=0$
(c) Roll's pant (c) $f^{\prime}(c)=0$

Rall's Point
-(1) Poly cts $x, x^{2}, x^{2}+2 x+1, x^{\text {100 }}$

$$
\log (-1)=
$$

(2) Sin n. $\cos x$ os

(4) $\log (x), x \geq 0$ f, g ct

$$
\begin{aligned}
& C \sin =0 \\
& x=\frac{\pi}{2}
\end{aligned}
$$

$$
\Rightarrow x=0 \text { on }
$$

$\sin (n \pi)=0$
$\square \sin \theta=0 \Rightarrow \theta=n \pi$

$$
n=0, \pm 1, \pm 2 \pm 3 \ldots
$$

$\operatorname{Cos}(n \pi)=(-1)^{n}$
Example 1 The
Relcispat
\sim
Example 1 The graph of $f(x)=-x^{2}+6 x-6$ for $1 \leq x \leq 5$ is shown below.

$$
\begin{gathered}
f^{\prime}(x)=-2 x+6 \\
f^{\prime}(c)=0 \\
-2 c+6=0 \\
c=3
\end{gathered}
$$

$$
\begin{aligned}
& \text { (1) css } \\
& \text { (2) } \frac{\text { diff }}{f(a)}=f(b) \\
& f(1)=f(5) \\
& -1+6-6=-25+30-6 \\
& -1
\end{aligned}
$$

$f(1)=f(5)=-1$
and f is continuous on $[1,5]$ and differentiable on $(1,5)$
hence,
according to Rolle's theorem, there exists at least one value of $x=c$ such that $f^{\prime}(c)=0$.
$f^{\prime}(x)=-2 x+6$
$f^{\prime}(c)=-2 c+6=0 \quad C z \geq$
Solve the above equation to obtain
$c=3$
Therefore at $x=3$ there is a tangent to the graph of f that has a slope equal to zero (horizontal line)

$f(0)=f(2 \pi)=2$ and f is continuous on $[0,2 \pi]$ and differentiable on ($0,2 \pi$) hence, according to Rolle's theorem, there exists at least one value (there may be more
than one!) of $x=c$ such that $f^{\prime}(c)=0$.
$f^{\prime}(x)=\cos (x)$
$f^{\prime}(c)=\cos (c)=0$
The above equation has two solutions on the interval $[0,2 \pi]$ $c_{1}=\pi / 2$ and $c_{2}=3 \pi / 2$.
Therefore both at $x=\pi / 2$ and $x=3 \pi / 2$ there are tangents to the graph that have a slope equal to zero, (|x|) is $f(n)=-|x-1|+1$
Ex. Function $f(x)=-|x-1|+1,-1 \leq x \leq 3$, does not satisfy Rolle's theorem: although it is continuous and $f(-1)=f(3)$, the function is not differentiable at $x=1$ and therefore $f^{\prime}(c)=$ 0 with c in the interval $(-1,3)$ is not guaranteed. In fact it is easy to see that there is no horizontal tangent to the graph of f on the interval $(-1,3)$.

\Rightarrow which of the functions given below satisfy all three conditions of Rolle's theorem?

b) $g(x)=\overline{|x-2|}$, for x in $[\overline{0,4]}$

Ex. Check that function $f(x)=x^{2}-4 x+3$ on the interval
$[1,3]$ satisfies all conditions of Rolle's theorem and then find all values of $x=c$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& 2 x-1=0 \\
& 2 c-4=
\end{aligned}
$$

Ex. Check that function $g(x)=\cos (x)$ on the interval $[-\pi / 2,-3 \pi / 2]$ satisfies all conditions of Rolle's theorem and

Ex. Check that function $g(x)=\cos (x)$ on the interval $[-\pi / 2,-3 \pi / 2]$ satisfies all conditions of Rolle's theorem and then find all values $x=c$ such that $g^{\prime}(c)=0$.

For problems $1=4$ and the numbers) c which satisfy the conclusion of Rolle's Theorem for the given function and interval.

$$
\begin{aligned}
& \text { 1. } f(x)=x^{3}-4 x^{2}+3 \text { on }[0,4] \\
& \text { 2. } Q(z)=15+2 z-z^{2} \text { on }[-2,4] \\
& \text { 3. } h(t)=\frac{1-\mathbf{e}^{t^{2}-9} \text { on }[-3,3]}{\text { 4. } g(w)=1+\cos [\pi w] \text { on }[5,9]} \\
& \text { 1. } f(x)=x^{2}-2 x-8 \text { on }[-1,3] \\
& \text { 2. } g(t)=2 t-t^{2}-t^{3} \text { on }[-2,1]
\end{aligned}
$$

1. Verify Mole's theorem for $(i) f(x)=(x+2)^{3}(x-3)^{4}$ in $(-2,3)$.
$\geq u \quad$ (ii) $y=e^{*}(\sin x-\cos x) \frac{1}{n}(\pi / 4,5 \pi / 4)$.

$$
\text { (iii) } f(x)=\overline{x(\overline{x+3})} e^{-\sqrt{2 / x}} \text { in }(-3,0) \text {. }
$$

(iv) $f(x)=\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in $(\overline{a, b)}$. a, b
4.) $f(x)=\log \left(x^{2}+a b\right)-\log (x(a+b))$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x^{2}+a b}-2 x-\frac{1}{x(a+b)}-(a+b) \\
& f^{\prime}(c)=\frac{a+b}{2+a b}=0
\end{aligned}
$$

(a) $a+b$ (b) $a \cdot b$
$2 c^{2} a+2 c^{2} b-c^{2}-b c^{2}-c^{2} b-a b^{2}=$
(c) $\pm \sqrt{a b}$
(d) $\frac{\dot{a}}{b}$

(1)
(3) $f(6)=f(w)$

$$
f(x)=x(x+3)-e^{-\frac{1}{2} x}=\left(x^{2}+3 x\right) e^{-\frac{1}{2} x}
$$

$$
f^{\prime}(x)=\left(x^{2}+3 x\right)\left(-\frac{1}{2}\right) e^{-\frac{1}{2} x}+(2 x+3) e^{-\frac{1}{2} x}
$$

$$
f^{\prime}(1)=\left(c^{2}+3 c\right)\left(-\frac{1}{2}\right) e^{-\frac{1}{2} c}+(2 c+3) e^{-\frac{1}{2} c}=0
$$

$$
2 \begin{aligned}
& \frac{e^{\frac{1}{2}}<}{\left.e^{2}\left(c^{2}+3 c\right)\left(-\frac{1}{2}\right)+2 c+3\right)=0} \\
& -\left(c^{2}+3 c\right)+4 c+6=\infty \\
& -c^{2}+c+6=0 \\
& c^{2}-c-6=0
\end{aligned}
$$

Mean Value Theorem

$a+\theta \cdot h$
$a+\frac{1}{2}$ Ex. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function.

$$
\begin{aligned}
& f(2)=8+8-2=1\left(\frac{1}{f}\right)=x^{6}\left(x ^ { 2 } \left(x^{2}=x f(b)-f\left(-a^{1}\right)^{2]}\right.\right. \\
& f(-1)=-V+2+x=2 \\
& 3 c^{2}+4 c-1=\frac{\frac{b-a}{14-2}}{3}=4 \quad c=-4 \pm \sqrt{16+6} . \\
& B C^{2}+4<-5=0 \quad=-4 \pm 8=-7=\frac{-12.7}{6}, \frac{4.7}{6}
\end{aligned}
$$

E10 Ex. Suppose that we know that $f(x)$ is continuous and differentiable on $[6,15]$. Let's also suppose that we know that $f(6)=2$ and that we know that $f^{\prime}(x) \leq 10$. What is the largest possible value for $f(15)$?

$$
\begin{aligned}
& \begin{aligned}
& f(i s) \leqslant-2+2 f(b)-f(a) f(b)=f(c)(b-a) \\
& f(a)+f^{\prime}(c)(b-a) f^{\prime}(a)=2 \\
& f(15)
\end{aligned} \\
& \begin{aligned}
f(15) \leq 20=\frac{f(15)}{f(15)} & =f(6)+-2+f^{\prime}(c)(9) \\
& \leq-2+90
\end{aligned}
\end{aligned}
$$

$$
f(15) \leq 88
$$

Ex. Determine all the number (s) c which satisfy the conclusion of the Mean Value Theorem for the given function and interval.

$h(z)=4 z^{3}-8 z^{2}+7 z-2$ on $[2,5]$

Now that we know that the Mean Value Theorem can be used there really isn't much to do. All we need to do is do some function evaluations and take the derivative.

$$
h(2)=12 \quad h(5)=333 \quad h^{\prime}(z)=12 z^{2}-16 z+7
$$

The final step is to then plug into the formula from the Mean Value Theorem and solve for c.

$$
\begin{aligned}
12 c^{2}-16 c+7 & =\frac{333-12}{5-2}=107 \quad \rightarrow \quad 12 c^{2}-16 c-100=0 \\
c & =\frac{2 \pm \sqrt{79}}{3}=-2.2961,3.6294
\end{aligned}
$$

So, we found two values and, in this case, only the second is in the interval and so the value we want is,

$$
c=\frac{2+\sqrt{79}}{3}=3.6294
$$

$A(t)=8 t+e^{-3 t}$ on $[-2,3]$

Now that we know that the Mean Value Theorem can be used there really isn't much to do. All we need to do is do some function evaluations and take the derivative.

$$
A(-2)=-16+\mathrm{e}^{6} \quad A(3)=24+\mathrm{e}^{-9} \quad A^{\prime}(t)=8-3 \mathrm{e}^{-3 t}
$$

The final step is to then plug into the formula from the Mean Value Theorem and solve for c.

$$
\begin{aligned}
8-3 \mathrm{e}^{-3 c} & =\frac{24+\mathrm{e}^{-3}-\left(-16+\mathrm{e}^{6}\right)}{3-(-2)}=-72.6857 \\
3 \mathrm{e}^{-3 c} & =80.6857 \\
\mathrm{e}^{-3 c} & =26.8952 \\
-3 c & =\ln (26.8952)=3.29195 \quad \Rightarrow \quad c=-1.0973
\end{aligned}
$$

So, we found a single value and it is in the interval and so the value we want is,

$$
c=-1.0973
$$

$f(b)=f(a)+\frac{1}{x}(c)(b-a)$

$$
f(n)(t\rangle \text { diff }[-7,0], f(-7)=\rightarrow,
$$

$$
\begin{aligned}
& =f(-7)+f^{\prime}(c)(0+7) \\
& =\rightarrow+2(7) \rightarrow+1 M=11
\end{aligned}
$$

$$
f(0) \leq 3+2(7)=11
$$

Show that $f(x)=x^{3}-7 x^{2}+25 x+8$ has exactly one real root.
$\Rightarrow F(0)=0-0$ to $+8=A V<$
$f(1)=1-7+25+8=+6 e$

$v f(-1)=-1-7-25^{-}+8=-$

For problems 5-8 determine all the number(s) c which satisfy the conclusion of the Mean Value Theorem for the given function and interval.

$$
\begin{aligned}
& \text { 5. } f(x)=x^{3}-x^{2}+x+8 \text { on }[-3,4] \\
& \text { 6. } g(t)=2 t^{3}+t^{2}+7 t-1 \text { on }[1,6] \\
& \text { 7. } P(t)=\mathrm{e}^{2 t}-6 t-3 \text { on }[-1,0] \\
& \text { 8. } h(x)=9 x-8 \sin \left(\frac{x}{2}\right) \text { on }[-3,-1]
\end{aligned}
$$

\qquad
(i) $f(x)=(x-1)(x-2)(x-3)$ in
(ii) $f(x)=\sin x$ in $[0, \pi]$
(iii) $f(x)=\log _{e} x$ in $[1, e]$

G(io) $f(x)=e^{x}$ in $[0,1]$.

Example 4.15. Prove that (if $O<a<b<1$), $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$.
Hence show hat $\quad \frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
(Mumbai

$$
\begin{aligned}
& x(x)=\tan ^{1} x \\
& f^{\prime}(x)=\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 2<3 \\
& \frac{1}{2}>\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(c)=f(b)-f(a), \\
& \begin{array}{c}
=\tan ^{-1} b-\tan ^{-1} a \\
b-a
\end{array} \\
& \begin{aligned}
& f^{\prime}(c)=f(b) \\
&=\tan ^{-1} b \\
& a<c<b
\end{aligned} \\
& a^{2}<c^{2}<b^{2} \\
& \Leftrightarrow \begin{array}{l}
1+a^{2}<1+c^{2}<1+b^{2} \\
\frac{1}{1+a^{2}}>\frac{1}{1+e^{2}}>\frac{1}{1+b^{2}} \quad V
\end{array} \\
& \begin{aligned}
& 1 \\
& 1 \operatorname{ta}^{2} \geq \tan ^{-1} b-\tan ^{-1} a>\frac{1}{1+b^{2}} \\
& \dot{b-a} \rightarrow b-a \quad \tan ^{-1} b-\tan ^{-1} a>b-4
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 1<2 \\
& 1+a^{2}-b-a \leq-1+b^{2} \\
& 2>1 \\
& \begin{array}{l}
b-a \\
\tan ^{2}
\end{array}>\tan ^{-1} b-\tan ^{-1} a>b-\delta
\end{aligned}
$$

$$
\begin{aligned}
& f(n)=\lg (1+x) ? \\
& \begin{array}{l}
1<+x \theta<1+x \\
1>\frac{1}{1+x \theta}>\frac{1}{1+x} \\
x>\frac{\sqrt{1+x}}{1+x} \frac{x}{1+x}
\end{array} \\
& f(x)=f^{0}(0)+x^{\prime} f^{\prime}(x) \\
& \lg _{\underline{f}(1 t n)}=0+x \cdot 1 \\
& \text { If } f(h)=f^{p} \theta\left((0 x) / 2 f^{\prime} \frac{1}{1+0)} h+\frac{h^{2}}{2!} f^{\prime \prime}(\theta h), 0<\theta<1 \text {, find } \theta \text { when } h=1 \text { and } f(x)=(1-x)^{5 / 2} \cdot \eta(1+x)=\frac{x}{1+\theta^{n}}\right.
\end{aligned}
$$

Example 4.16. Prove that $\log (1+x)=x(1+\theta x)$, where $0<\theta<1$ and thence deduce that

$$
\int \frac{x}{1+x}<\log (1+x)<x, x>a
$$

Solution. Let $f(x)=\log (1+x)$, then by second form of Lagrange's mean value theorem

$$
(0<\theta<1)
$$

we have
$\begin{aligned}(a+h) & =f(a)+h f(a+ \\ f(x) & =f(0)+x f^{\prime}(\theta x)\end{aligned}$
[Taking $a=0, h=x$]
or

Since
or
$\log (1+x)=\log (1)+x \cdot 1 /(1+\theta x)$
$\log (1+x)=x /(1+\theta x)$
$0<\theta<1, \quad \therefore \quad 0<\theta x<x$ for $x>0$.
R(n)- $((0)$
$x>\frac{x}{1+\theta x}>\frac{x}{1+x}$

$$
x>\frac{x}{1+\theta x}>\frac{x}{1+x}
$$

or $\frac{x}{1+x}<\log (1+x)<x, x>0$. \qquad [By (i)]

Taylor's Theorem
If (i) $f(x)$ and its first $(n-1)$ derivatives be continuous in $[a, a+h]$, and (ii) $f^{n}(x)$ exists for every value of x in $(a, a+h)$, then there is at least one number $\theta(0<\theta<1)$, such that

$$
\mathbf{f}(\mathbf{a}+\mathbf{h})=\mathbf{f}(\mathbf{a})+\mathbf{h} \mathbf{f}^{\prime}(\mathbf{a})+\frac{\mathbf{h}^{2}}{2!} \mathbf{f}^{\prime \prime}(\mathbf{a})+\ldots+\frac{\mathbf{h}^{n}}{n!} \mathbf{f}^{n}(\mathbf{a}+\theta \mathbf{h})
$$

which is called Taylor's theorem with Lagrange's form remainder, the remainder K_{n} being $\frac{h^{n}}{n!} f^{n}(a+\theta h)$.

Cor. 1. Taking $n=1$ in (1), Taylor's theorem reduces to Lagrange's Mean-value theorem.
Cor. 2. Putting $a=0$ and $h=x$ in (1), we get

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots .+\frac{x^{n}}{n!} f^{n}(\theta x)
$$

which is known as Maclaurin's theorem with Lagrange's form of remainder.

$$
(0)=1
$$

$$
f(x)=f(0)+x \cdot f^{\prime}(a)+\ldots+x^{n}
$$

$f^{\prime}(0)=1$ \qquad

$$
f^{\prime \prime}(0)=1+e^{x}=1+x+\frac{x^{2}}{L^{2}}+\frac{x^{3}}{L^{3}}+\cdots+\frac{x^{4}}{L^{n}} e^{0 x}\left(-x^{-1}\right.
$$

$$
f^{\prime \prime}(x)=e^{\prime}(x)+f(0)+x \cdot f^{\frac{1}{\left(n+x^{2}\right.}} f^{\prime}\left(f^{0} \frac{x^{2}}{2} \cdot(-1)^{+}+\frac{x^{n}}{n^{n}} f^{n}\right. \text { (an) }
$$

$$
\begin{equation*}
f(x)=\cos ^{\sqrt{2}} f(0)=1 \tag{-1}
\end{equation*}
$$

Example 4.18. Find the Muclaurn's theorem ⿲utith Lagruxyse's form of remainder for $(x)=\cos x$.

$$
1
$$

$$
\left(n^{\prime}\right)_{3}^{2}=+1-(-1)=-1
$$

$$
(-1)^{2}=f_{1}^{1}(0)+n=\frac{(-1)}{(0)}(0) \frac{x^{2}}{(-2} f^{\prime \prime}(0)+\frac{n^{3}}{13} f^{\prime \prime \prime}(0)
$$

$$
t i(0)+n \cdot t\left(-\sqrt{3} \frac{1}{2} t(0)+\frac{10}{2} t\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
f^{\prime}(x)=-\sin x \\
f^{\prime \prime}(x)=-\cos x
\end{array} \\
& f^{\prime}(x)=-5 \text { inn } \quad f^{\prime}(0)=0 \\
& \operatorname{Cos} x=1 \\
& \begin{array}{l}
f^{\prime \prime} \\
f^{\prime \prime}(0)=\overline{-1} \\
(x)=\sin x f^{\prime \prime \prime}(0)=0
\end{array} \\
& f^{\prime \prime}(n)=\operatorname{com} \quad f^{1 K}(0)=1 \\
& x_{0}(x)=-\sin n \\
& f^{W \mid}(x)=-\cos \mid f^{V \mid}(0)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \checkmark \cos x=1 \frac{f^{2} x_{2}^{2}+t^{4} x y}{L^{2}} \frac{f(x)^{5}}{L}+h-f^{\prime}(\overline{a+\theta h}) \\
& e^{x}=1+n+\frac{n^{2}}{L^{2}} \frac{n^{2}}{}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots\rangle e^{n}=4 \ln _{4} \pi(n-1)^{\prime}
\end{aligned}
$$

Example 4.19. If $f(x)=\log (1+x), x>0$, using Maclaurin's theorem, show that for $0<0<1$,

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3(1+\overline{\theta x})^{3}} .
$$

Deduce that $\log (1+x)<x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$ for $x>0$.

$$
\begin{aligned}
& f(x)=\lg (1+n) \quad f(x)=f(0)+x \cdot f^{\prime}(0)+x^{2} \cdot f^{\prime \prime}(0)+\frac{x^{3}}{13} \cdot f^{\prime \prime \prime}(\theta x)
\end{aligned}
$$

\qquad
(1) Maclaurin's series. If f xx) can be expanded as an infinite series, then

If $f(x)$ possess derivatives of all orders and the remainder R_{n} in (3) on page 145 tends to zero as $n \rightarrow \infty$, then the Maclaurin's theorembecomes the Maclaurin's series (1).

Example 420. Using Maclaurn's's series, expand tan xapto the termqantaning $x^{5}+24$ hemin

$t^{\operatorname{tin} x}=0+x \cdot 1+x^{3}-2+\frac{x^{5}}{x^{2}} 16$

ex .sine"

$$
\sinh x=\cosh h
$$

$$
(\sinh x)^{\prime} \frac{4}{x+\frac{x^{3}-4+\cos ^{3} x+2}{23}\left(1+\tan ^{2} x\right)}
$$

Method 1

$$
\begin{aligned}
& f(x)=e^{\sin x} \\
& f^{\prime}(x)=x \operatorname{lin} x \cdot \cos x
\end{aligned}
$$

$$
=1+x-1+\frac{x^{2}}{2}
$$

Exancers 4.21. Expand emx by Macluarin's series or othervise upto the term contuinings x.
(Bhopal, 2009; V. 7
Mthol $2 e^{\text {sim. }}$

$$
e^{\sin n}=1+\frac{\sin n}{}+\frac{(\sin n)^{2}}{2}+(\sin n)^{3}
$$

$$
\begin{aligned}
& 8 \cdot e^{x}=1+x+\frac{x^{2}}{4}+x^{3}-x^{4} \\
& \sin x=x-x^{3} \quad \sigma^{6}
\end{aligned}
$$

$$
c+\frac{x}{120}-\overline{2 n}-
$$

$$
f(x)=e^{a \sin t x}
$$

f^{\prime}

$$
\begin{aligned}
& f^{\prime \prime}(x)=e^{a \sin ^{1} x} \cdot a^{2}(1-x)^{-1}+e \\
& =\underline{\left.e^{-\sin ^{1} n} \cdot a^{2}(1-1)^{2}\right)^{-1}}+e^{\sin ^{\operatorname{Sin} x}\left(1-x^{2-3}\right) 2} \cdot\left(a^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{1+x+\frac{x^{2}}{2}-\frac{1}{8} x^{4} \text {. }}^{1} \\
& \text {-8 } \\
& 4.87 \\
& \text { meth-d-2 } e^{x}=1+x+\frac{x^{2}}{7}+x^{3}-x^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1+{ }^{\prime \prime}=\theta^{x}- \\
f^{\prime}(x)=\cos x
\end{array} \\
& \left(x+\underline{x}+\frac{x^{2}}{L^{2}}+m\right)-\left(x-\frac{x^{2}}{c^{2}} \frac{-n^{3}}{3}\right. \\
& f^{\prime \prime}(x)=e^{\sin x} \cdot \cos ^{2} x+e(-\sin) \quad f^{\prime \prime}(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime \prime}(0)=\frac{a^{3}+0}{\sqrt{1-x^{2}}+0+\sin ^{-1} x a c\left(c 1^{2}-x^{2}\right)^{-1 / 2}} \\
& \sin ^{-1} x \\
& e^{a \sin -1 x}=1+a \cdot x+\frac{x^{2}}{2} \cdot a^{2}+\frac{x^{3}}{2} a\left(a^{2}+1\right) \\
& (x)=c^{a \operatorname{Sin}^{2} x-a} \sin e^{\sin ^{2}=1+2+\frac{2}{2}+\frac{2 n}{6} e^{t}+1(0)=\frac{\left.t+\frac{t^{2}}{1}+t\right)}{6}} \\
& -a\left(-\frac{1}{2}\right)\left(1-x^{2}\right)^{2} p^{2} \operatorname{Sin}+\frac{\left(\frac{(\sin x)^{2}}{2}+(-x)^{\prime}\right.}{-}
\end{aligned}
$$

Example 4.23. Expand $e^{a \sin ^{-1} x}$ in ascending powers of x.

$$
f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{12} f^{\prime \prime}(0)+
$$

$x-4$ (3) Taylor's series. If $f(x+h)$ can be expanded as an infinite series, then

$$
\begin{equation*}
f(x+h)=f(x)+\overline{\left.\left.h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots \infty\right) . . \infty\right)} \tag{1}
\end{equation*}
$$

If $f(x)$ possesses derivatives of all orders and the remainder R_{n} in (1) on page 147, tends to zero as $n \rightarrow \infty$, then the Taylor's theorem becomes the TayLor's series (1).

Cor. Replacing x by a and h by $(x-a)$ in (1), we get

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime \prime}(a)+\ldots \infty
$$

Taking $a=0$, we get Maclaurin's series.

$$
\begin{aligned}
& \text { ain's series. }
\end{aligned} \quad(x-2) \quad a=2
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \\
& \begin{array}{l}
f^{\prime}(1)=1 \\
f^{\prime \prime}(1)=-1
\end{array} \\
& \left\{\begin{array}{l}
f^{\prime \prime \prime}(m)=\frac{2}{x^{3}} \\
\text { iNF,. }
\end{array}\right. \\
& \begin{array}{c}
111 \\
p \mid v / 1)=2
\end{array} \\
& \lg x=0+(x-1) \cdot 1+(x-1)^{2} \\
& \operatorname{lom}=(x-1)+(x-1)^{2} \frac{2}{2} \cdot(-1)+\frac{(x-1)^{3}}{6}=2+\frac{(x-1)^{4}}{24}(-6)
\end{aligned}
$$

$$
\begin{array}{r}
f^{\prime \prime \prime \prime}(x)=\frac{2}{x^{3}}-11(1)=2 \quad \log _{\text {gu }}=(x-1)+\frac{(x-1)^{2}}{2}(-1)+\frac{(x-1)^{3}}{2}-\frac{(x-1)^{4}}{4} \quad 24 \\
f^{\prime V}(x)=\frac{-6}{x^{4}} \quad f^{\prime \prime}(1)=-6 \quad \log (1.1)=(0.1)+\frac{(0.1)^{2}}{2}(1)+\frac{(0.1)^{3}}{3}-\frac{(0.1))^{4}}{4}
\end{array}
$$

Using Taylor's theorem, express the polynomial $\overline{2 x^{3}+\sqrt{x^{2}+x}-6 \text { in powers of }(x-1)}$
Expand (the (Cochin., 2005) (ii) $\overline{\operatorname{an}^{-1} x}$, in powers of $\overline{\overline{x-1})}$ pto four terms.

$$
\begin{aligned}
& f(x)=2 x^{3}+1 x^{2} \\
& f^{\prime}(x)=6 x^{2}+14 x+1 \\
& f^{\prime \prime}(x)=12 x+14 \\
& f^{\prime \prime \prime}(x)=12
\end{aligned}
$$

$$
\begin{aligned}
& =a(x-1)^{3}+b(x-1)^{2}+\left((x-1)^{\prime}+d\right. \\
& f(x)=f(1)+(x-1) f^{\prime}(1)+(x-1)^{2}-f^{\prime \prime}(1) \\
& =4+(x-1) 21+\frac{e^{2}}{2}-x-1 \cdot 12 \\
& a=2, b z \quad c=21 d=y
\end{aligned}
$$

Using Mactaurin's series, expand the towing functions:
1- $\log (1+x)$. Hence deduce that $\log \frac{\sqrt{1+x}}{\sqrt{1-x}}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots$
2. $\sin x$ (P.T.U., 2005)
3. $\sqrt{(1+\sin 2 x)}$

$$
\begin{aligned}
& \frac{\lg (1+x)}{}=x-\frac{x^{2}}{2}+\frac{x^{3}}{5}- \\
& \begin{aligned}
\log \left(\frac{1+x}{1-x}\right)^{1 / 2}= & \frac{1}{2}(\lg (1+x)-\lg (1-x)) \\
= & \frac{1}{2}\left(\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{y x}{5}-\cdots\right)-\left(-x-\frac{x^{x}}{2}-\frac{x^{3}}{3}-\frac{x_{5}}{4}-\right)\right) \\
& \frac{1}{2}\left(2 x+\frac{x^{3}}{3}+\frac{2 x^{5}}{5}-\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}-
\end{aligned}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \sqrt{1+\sin 2} \\
& \sqrt{\cos ^{2} n+\sin ^{2} n+2 \sin n \cos m} \sqrt{ } \\
& f^{\prime \prime}=\left(\frac{h}{v}\right) \\
& \sqrt{(\cos x+\sin n)^{2}}=\cos ^{2}+\sin ^{2} n \\
& f(x)=\cos x+\sin x, f^{\prime}(x)=-\sin x+\cos \quad f^{\prime \prime}(x)=-\cos x \sin \quad f^{\prime} \\
& \sqrt{1+2 x}=1+x \cdot 1+\frac{x^{2}}{\sqrt{2}}(-1)+\frac{x^{3}}{\sqrt{3}} \cdot(-1)
\end{aligned}
$$

$$
x^{2} \sqrt{\sin ^{-1} x}
$$

$f^{\prime \prime \prime}(n)$

$$
f^{v}(n)=
$$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \quad x=\tan \theta \quad \frac{2 \tan \theta}{1+\tan x \theta}=\sin 2 \theta \\
& \sin ^{-1}(\sin 2 \theta) \\
& 20 \\
& f(n)=2 \cdot \tan ^{-1} n \\
& =2\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}\right) \\
& \begin{array}{l}
\frac{\tan ^{-1}\left(\sqrt{\sqrt{1 x^{2}}-1}\right)}{\tan ^{-1}\left(\frac{\sqrt{\operatorname{sen}}-1}{\tan \theta}\right)}=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta \theta}\right) \quad \text { Pat } x=\tan \theta \\
1-\cos \theta
\end{array} \\
& \left.\sin ^{2} \theta=-\frac{-\cos \theta}{2}\right) \tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right)=\tan ^{-1}\left(\frac{1-\cos \theta^{2}}{\left.\frac{\operatorname{cin} \theta}{\sin \theta}\right)}\right. \\
& 1-\cos 20^{\circ} \quad \tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)=\tan ^{-1}\left(\frac{2 \sin ^{2} \theta / 2}{25 \times \frac{\theta}{2} \cos \theta}\right) \\
& \tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{1}{2} \theta=\frac{1}{2} \tan ^{-1} n \\
& =\frac{1}{2}\left(x^{2}-x^{2}+2 x^{5}-x \geqslant-1\right)
\end{aligned}
$$

$$
\left.\begin{array}{r}
\tan ^{-1}\left(\tan \frac{y}{2}\right)=\frac{1}{2} \theta=\frac{1}{2} \tan ^{-1} x \\
=\frac{1}{2}\left(x-\frac{x^{2}}{3}+\frac{x 5^{5}}{5}-x 7 / 7\right.
\end{array}\right)
$$

In general $\underset{x \rightarrow a}{\operatorname{Lt}[f(x) / \phi(x)]=\underset{x \rightarrow a}{\operatorname{Lt} f(x) / \operatorname{Lt}_{x \rightarrow a}} \boldsymbol{\phi}(x) \text {. But when } \operatorname{Lt}_{x \rightarrow a} f(x) \text { and } \underset{x \rightarrow a}{\operatorname{Lt}} \phi(x) \text { are both zero, then the }}$ quotient reduces to the indeterminate form $0 / 0$. This does not imply that $\operatorname{Lt}_{x \rightarrow a}[f(x) / \phi(x)]$ is meaningless or it does not exist. In fact, in many cases, it has a finite value. We shall now, study the methods of evaluating the limits in such and similar other cases :

MANat -1

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 0} \frac{f(x)}{g(x)}=\operatorname{Lit}_{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\operatorname{Lt}_{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=-\frac{-\operatorname{Lt}_{x \rightarrow 0} \cdot \frac{f^{n}(x)}{g^{n}(x)}=\text { Finite }}{\underline{L}} \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{\operatorname{Cis} x}{1}=\frac{\operatorname{Cos}(0)}{1}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta}{\Delta} \frac{0}{0} \quad \operatorname{Ltt}_{x \rightarrow a} \frac{f(x)}{\phi(x)}=\frac{\mathbf{f}^{\mathbf{n}}(\mathbf{a})}{\phi^{\mathbf{n}}(\mathbf{a})}=\operatorname{Ltt}_{x \rightarrow a} \frac{\mathbf{f}^{\mathbf{n}}(\mathbf{x})}{\phi^{\mathbf{n}}(\mathbf{x})}=\underline{\sim}
\end{aligned}
$$

[Rule to evaluate Lt $[f(x) / \phi(x)]$ in $0 / 0$ form :
$x(1+\ln x)$
Example 4.26. Evaluate (i) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
(1) $\frac{x^{x}-y^{x}(1+x)}{x^{2}}=\frac{x\left(1+x+x+\frac{x^{2}}{2}+\frac{x_{1}}{4}-\right)-\left(x-\frac{x_{2}}{2}+x_{3}-\frac{x^{-}}{4}-\right)}{x^{2}}$

$$
\begin{aligned}
= & \frac{\left(x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{0}-1-\left(\not x-\frac{x^{2}}{2}+\frac{x^{3}}{5}-\frac{x^{4}}{5}-\right)\right.}{L_{n \rightarrow 0}}=\frac{x^{2}\left(1+\frac{1}{2}\right)+x^{2}\left(\frac{1}{2}-\frac{1}{3}\right)}{x^{2}}=\left(1+\frac{1}{2}\right)+x\left(\frac{1}{2}-\frac{1}{3}\right) \\
= & =\frac{3}{2}
\end{aligned}
$$

1. $\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-b^{x}}{x} \quad$ (V.T.U., 2008) 2. $\operatorname{Lt}_{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{2} \sin x}$
2. $\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-b^{x}}{x} \quad$ (V.T.U., 2008) 2. $\operatorname{Lt}_{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{2} \sin x}$
3. $\operatorname{Lt}_{\theta \rightarrow 0} \frac{\theta-\sin \theta}{\sin \theta(1-\cos \theta)}$
4. $\operatorname{Lt}_{x \rightarrow \pi / 2} \frac{a^{\sin x}-a}{\log _{e} \sin x}$

$$
\begin{aligned}
\left(1 \operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-b^{x^{2}}}{x}\right. & =\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x} \log a-b^{2} \log b}{1} \\
& =\frac{\log a-\log b}{1}=\log _{1}\left(\frac{a}{b}\right)
\end{aligned}
$$

$$
y=a^{x}
$$

$$
\lg y=x \ln
$$

$$
\frac{1}{3} \cdot y^{\prime}=\log _{6}
$$

$$
y^{\prime}=a^{x} \ln x
$$

$=\sin 2 \theta$
$=\operatorname{Lit}_{\theta \rightarrow 0} \frac{\cos \theta}{-\frac{\cos \theta(1-\cos \theta)-\sin \theta(\sin \theta)}{1}+\cos ^{2} \theta-\sin \theta+\cos 2 \theta-2}$

(2) Form ∞ / ∞. It can be shown that L'Hospital's rule can also be applied to this case by differentiating the numerator and denominator separately as many times as would be necessary.

Example 4.28. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\log x}{\cot x}$.

$$
\begin{aligned}
\operatorname{Lt}_{x \rightarrow 0} \frac{1}{x} & =\operatorname{Lit}_{x \rightarrow 0}^{-\operatorname{cose}^{2} n} \frac{\sin ^{2} n}{n} \\
& =\operatorname{Lit}_{n \rightarrow 0} \frac{-2 \operatorname{Sin} \operatorname{con}}{1}=\frac{-2(0) 1}{1}=0
\end{aligned}
$$

Obs. Use of known series and standard limits. In many cases, it would be found more convenient to use expansions of known functions and standard limits for evaluating the indeterminate forms. For this purpose, remember the series of \& 4.4 (2) and the following limits :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \operatorname{Ltt}_{x \rightarrow 0}(1+x)^{1 / x}=e
$$

\qquad

(3) Forms reducible to $0 / 0$ form. Each of the following indeterminate forms can be easily reduced to the form $0 / 0($ or $\infty / \infty)$ by suitable transformation and then the limits can be found as usual.
(3) Forms reducible to $0 / 0$ form. Each of the following indeterminate forms can be easily reduced to the form $0 / 0($ or $\infty / \infty)$ by suitable transformation and then the limits can be found as usual.
I. Form $0 \times \infty$. If $\underset{x \rightarrow 0}{L t} f(x)=0$ and $\underset{x \rightarrow \infty}{L t} \phi(x)=\infty$, then

$$
\operatorname{Lt}_{x \rightarrow a}^{\operatorname{Lt}}[f(x) \cdot \phi(x)] \text { assumes the form } 0 \times \infty .
$$

To evaluate this limit, we write
$f(x) \cdot \phi(x)=f(x) /[1 / \phi(x)]$ to take the form $0 / 0$.
$=\phi(x) /[1 / f(x)]$ to take the form ∞ / ∞.
$\frac{1}{\infty} \frac{\infty}{\infty}+\infty \rightarrow 0 \cdot \frac{1}{0}=\frac{0}{0}$
Example 4.31. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}(\tan x \log x)$

$$
=\operatorname{Lox}_{0} \frac{\frac{1}{-\operatorname{cosec}^{2} x}}{-\operatorname{Lt}_{x \rightarrow 0}} \frac{-\sin ^{2} x}{x}
$$

II. Form $\infty-\infty$. If $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=\infty=\underset{x \rightarrow a}{\operatorname{Lt}} \phi(x)$, then $\underset{x \rightarrow a}{\operatorname{Lt}}[f(x)-\phi(x)]$ assumes the form $\infty-\infty$.

It can be reduced to the from $0 / 0$ by writing

$$
f(x)-\phi(x)=\left[\frac{1}{\phi(x)}-\frac{1}{f(x)}\right] / \frac{1}{f(x) \phi(x)}
$$

$$
0=e^{\operatorname{los} 0^{0}}=e^{0 \ln 0}=e^{0 .-\infty}
$$

III. Forms $0^{0}, 1^{\infty}, \infty^{0}$. If $y=\underset{x \rightarrow a}{\operatorname{Lt}}[f(x)]^{\phi(x)}$ assumes one of these forms, then $\log y=\operatorname{Lt}_{x \rightarrow a} \phi(x) \log f(x)$ takes the form $0 \times \infty$, which can be evaluated by the method given in I above. If $\log y=l$, then $y=e^{l}$.

$$
\begin{aligned}
& \begin{array}{l}
x \rightarrow 0\left(1+\frac{\pi}{15} \text { a }+\cdots{ }_{x \rightarrow 0}\left(1+x^{2}\left(\frac{1}{3}+\frac{2}{15} x^{2}+-\right)\right)^{1 / x^{2}}\right.
\end{array} \\
& \operatorname{Lit}_{x \rightarrow 0}\left(1+x^{2} t\right)^{1 / x^{2}} \\
& t=\frac{\frac{1}{3}+\frac{2}{15} n^{2}+}{\frac{1}{2}}
\end{aligned}
$$

$$
\frac{1}{0}-1=
$$

1. $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$
2. $\operatorname{Ltt}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
3. $\operatorname{Lt}_{x \rightarrow 1 /}(2 x \tan x-\pi \sec x)$
(V.T.U., 2008)
4. $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\cot x-1 / x}{x}\right)$

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow \frac{\pi}{2}} \frac{2 x \cdot \sin x}{\operatorname{Cin}}-\frac{\pi-1}{\operatorname{Cin}}=\frac{1+\frac{2 x \sin n-\pi}{2}}{\operatorname{Cos} x}=\frac{2 \sin x+2 n \cos x}{\sin }-0 \\
& \text { (4) } \operatorname{Ltt}_{x \rightarrow 0}\left(\frac{\cot x-1 / x}{x}\right)=\operatorname{Ltt}_{x \rightarrow c}\left(\frac{\cos u}{x \sin }-\frac{1}{x^{2}}\right) \\
& =\operatorname{Lt}_{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{2} \sin x} \\
& =\operatorname{Lt}_{x \rightarrow 0}-\frac{x \sin n+\cos x-\cos n}{x^{2}-\cos n+2 x \sin } \\
& =\operatorname{Lit}_{x \rightarrow 0}^{+} \frac{-\sin n}{x \cos +2 \sin n}=\frac{-\operatorname{cin}}{-x \sin +\cos +2 \operatorname{cin}} \frac{1}{3}
\end{aligned}
$$

5. $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\left.1^{\infty}-\underset{x^{2}}{ }-\cot ^{2} x\right)}{}\right.$
6. $\operatorname{Lt}_{x \rightarrow 1}(x)^{1 /(1-x)}$
7. $\operatorname{Lt}_{x \rightarrow 0}\left(a^{x}+x\right)^{1 / x}$
(V.T.U., 2007)
8. $\operatorname{Lt}_{x \rightarrow \pi / 2}(\sec x)^{\cot x}$
9. $\operatorname{Lt}_{x \rightarrow 0}(1+\sin x)^{\cot x}$
10. $\operatorname{Lt}_{x \rightarrow \pi / 2}(\tan x)^{\tan 2 x}$
11. $\operatorname{Lt}_{x \rightarrow 0}(\cos x)^{1 / x^{2}}$
12. $\operatorname{Lt}_{x \rightarrow 0}(\cot x)^{1 / \log x}$

Example 4.27. Find the values of a and b such that $\left.\operatorname{Lt}_{x \rightarrow 0} \frac{\left.\frac{x(a+b}{\sigma}-\infty\right)}{x^{5}}=\underline{c o s} x\right)$

$$
\begin{array}{rl}
\operatorname{Lt}_{x \rightarrow 0} \frac{x(-b \sin)+(a+b \cos x)-c \cos x}{5 x^{4}} & =1 \\
\frac{a+b-c}{0}=1 & a+b-c=0 \tag{1}
\end{array}
$$

(0)

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 0} \frac{(-b \sin x)+x(-b \cos x)+(-b \sin x)+c \sin x}{20 x^{3}}=1 \\
& a+60-180=0 \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{(-2 b+c) \sin x-b x \cos x}{20 x^{3}} \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{(-2 b+c) \cos x+b x \sin x-b \cos x}{60 x^{2}}=1 \\
& \frac{-2 b+c-b}{0}=1 \\
& \operatorname{Lt}_{n \rightarrow 0} \frac{\left(-2 b^{b}+3 b\right) \operatorname{cin}+b x \sin n-b \cos n}{60 n^{2}}=1 \\
& -3 b+c=a \\
& c=3 b \\
& C=180 \\
& \operatorname{Lt}_{x \rightarrow 0} \quad \frac{b x \sin x}{60 x}=\frac{b}{\operatorname{cog}_{0}} \operatorname{Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1 \\
& =\frac{b}{60}=1 \Rightarrow b=60
\end{aligned}
$$

Increasing and decreasing function
1.2.4 Increasing and Decreasing Functions

Let $y=f(x)$ be a function defined on an interval I contained in the domain of the function $f(x)$. Let x_{1}, x_{2} be any two points in I, where x_{1}, x_{2} are not the end points of the interval. On the interval I, the function $f(x)$ is said to be
(i) an increasing function, if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1} \leq x_{2}$.
(ii) a strictly increasing function, if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
(iii) a decreasing function, if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
(iv) a strictly decreasing function, if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

A function which is either increasing or decreasing in the entire interval I is called a monotonic function.

Therefore, we conclude that
(i) f increases in I if $f^{\prime}(x) \geq 0$ for all x in I.
(ii) $f \overline{\text { decreases }}$ in I if $f^{\prime}(x)<0$ for all x in I.

Example 1.10 Find the intervals in which the function $f(x)=\sin 3 x, 0 \leq x \leq \pi / 2$ is increasing or decreasing.

$$
f(x)=\sin 3 x
$$

$$
\begin{aligned}
& \cos \theta=0 \quad f^{\prime}(x)=3 \cos (3 x)=0 \\
& \theta=(2 n+1) \frac{\pi}{2} \\
& 3 x=(2 x+1) \frac{\pi}{2} \\
& n=0 \pm 1 \pm 2 \\
& x=(2 n+1) \frac{\pi}{6} \\
& \begin{array}{l}
\theta_{2} \theta=0 \\
\theta_{2}(2 n+1) \frac{\pi}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dec} \frac{\frac{\pi}{6} \leq x \leq \frac{\pi}{2}}{4} \quad f^{\prime}(x)=3 \cdot \cos \frac{3 \pi}{4}=3 \cos \left(\pi-\frac{\pi}{4}\right)=-3 \operatorname{con} \frac{\text { oec }}{4}=\sqrt{\text { ve }} \\
& \text { 29. } \ln (2+x)-2 x /(2+x), \quad x \in \mathbb{R} \\
& \text { 30. } x|x|, x \in \mathbb{R} \text {. } \\
& f(x)=\log (2+x) \frac{-2 x}{(2+x)} \quad x \in R \quad(-\infty, \infty) \\
& f^{\prime}(x)=\frac{1}{2+n}-\frac{(2+n)(2)-2 x(1)}{(2+n)^{2}}=\frac{1}{2+n}-\frac{4+2 x-2 x}{(2+n)^{2}} \\
& =\frac{1}{2+x} \frac{-4}{(2+x)^{2}}=\frac{2+x-4}{(2+x)^{2}}=\frac{x-2}{(2+x)^{2}} \\
& x=2 \\
& {[\infty, \infty)} \\
& (-\infty, 2)(2, \infty) \\
& \text {-ve tve } \\
& \text { Dee Inc } \\
& 30 \quad x|x|=\frac{d}{d x}(|x|)=\frac{x}{|x|} \\
& f^{\prime}(x)=x \cdot \frac{x}{|x|}+|x|=\frac{x^{2}+|x|^{2}}{|x|}=+ \text { ve Snc }(-\infty, \infty)
\end{aligned}
$$

31. $\tan ^{-1} x+x, \quad x \in \mathbb{R}$.

$$
\begin{aligned}
& \frac{1}{1+x^{2}}+1 \\
& \frac{1+1+x^{2}}{1+x^{2}}=\frac{2+x^{2}}{1+x^{2}}=1 v e
\end{aligned}
$$

(d) Inc
(b) Dec Inc $(-\infty, \infty) \quad \forall x \in R$

MAXIMA AND MINIMA

Def. A function $f(x)$ is said to have a maximum value at $x=a$, if there exists a small number h, however small, such that $f(a)>$ both $f(a-h)$ and $f(a+h)$.

A function $f(x)$ is said to have a minimum value at $x=a$, if there exists a small number h, however small, such that $f(a)$ both $f(a-h)$ and $f(a+h)$.

(3) Procedure for finding maxima and minima

(i) Put the given function $=f(x)$
(ii) Find $f^{\prime}(x)$ and equate it to zero. Solve this equation and let its roots be a, b, c, \ldots
(iii) Find $f^{\prime \prime}(x)$ and substitute in it by turns $x=a, b, c, \ldots$
$x=a, b, c-I f f^{\prime \prime}(a)$ is $-v e, f(x)$ is maximum at $x=a$. -
$f^{\prime \prime}(x)=$ chan
If $f^{\prime \prime}(a)$ is $+v e, f^{\prime \prime}(x)$ is minima at $x=a$.

(iv) Sometimes $f^{\prime \prime}(x)$ may be difficult to find out or $f^{\prime \prime}(x)$ may be zero at $x=a$. In such cases, see if $f^{\prime}(x)$ changes sign from+ve to - we as x passes through a, then $f(x)$ is maximum at $x=a$.2

If $f^{\prime}(x)$ changes sign from - vet to + eve as x passes through $a, f(x)$ is minimum at $x=a$.
If $f^{\prime}(x)$ does not change sign while passing through $x=a, f(x)$ is neither maximum nor minimum at $x=a$.
\checkmark

Theorem 1.6 Let $f^{(n)}(x)$ exist for x in (a, b) and be continuous there. Let

Then,

$$
f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0 \text { and } f^{(n)}\left(x_{0}\right) \neq 0 .
$$

$$
f^{\prime \prime}(\pi) \neq 0
$$

(i) when n is even, $f(x)$ has a maximum if $f^{(n)}\left(x_{0}\right)<0$ and a minimum if $f^{(n)}\left(x_{0}\right)<0$ (ii) when n is odd, $f(x)$ has neither a maximum, nor a minimum.

Absolute maximum/minimum values of a function $f(x)$ in an interval $[a, b]$ are defined as follows:
Absolute maximum value $=\max \{f(a), f(b)$, all local maximum values $\}$
Absolute minimum value $=\min \{f(a), f(b)$, all local minimum values $\}$.

$f^{\prime}(x)=0$

Example 4.56. Find the maximum and minimum values of $3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ in the interval) $(0,2)$.)

$$
\begin{array}{ll}
f(0)=1 & f(x)=3 x^{4}-2 x^{3}-6 x^{2}+6 x+1 \\
f(2)=- & f^{\prime}(x)=12 x^{3}-6 x^{2}-12 x+6=0 \\
& 2 x^{3}-x^{2}-2 x+1=0 \\
& x^{2}(2 x-1)-1(2 x-1)=0 \\
\left(x^{2}-1\right)(2 x-1)=0 & f^{\prime \prime}(x)=36 x^{2}-12 x-12 \\
&
\end{array} \quad \begin{array}{ll}
f^{\prime \prime}(1)=36-12-12=+v e \mathrm{~min} \\
& \\
x= \pm 1, \frac{1}{2}
\end{array}
$$

$\min ($

$$
\begin{aligned}
& f(1)=3-2-6+6+1=2^{2} \\
& f(-1)=3+2-6-6+1=-c^{2}
\end{aligned} \left\lvert\, \begin{gathered}
f\left(\frac{1}{2}\right)=\frac{3}{16}-\frac{2}{8}-\frac{6}{4}+\frac{6}{2} H \\
\frac{3-4-24+48+16}{16}=\frac{39}{16}
\end{gathered}\right.
$$

Example 4.57. Show that $\sin x(1+\cos x)$ is a maximum when $x=\pi / 3$.
Example 1.13 Find the absolute maximum/minimum values of the function

$$
\begin{aligned}
& \therefore \quad f(x)=\sin x(1+\cos x), 0 \leq x \leq 2 \pi . \quad[0,2 \hbar] \\
& f^{\prime}(x)=\cos x(1+\cos x)+\sin x(-\sin x) \\
& =\operatorname{Cos} x+\cos ^{2} x-\sin ^{2} x=0 \\
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& =\cos x+\cos 2 x=0 \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& =\cos x+2 \cos ^{2} x-1=0 \\
& =2 \cos ^{2} x+\cos x \rightarrow=0 \\
& f(x)=\cos x+\cos n \\
& \cos x=-1 \\
& \frac{7}{4}=\frac{-173}{4}=-1, \frac{1}{2} \\
& \cos x=\frac{1^{2}}{2} \\
& x=\pi \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3} \quad 2 \pi-\frac{\pi}{3} \\
& 2 \pi+\frac{\hbar}{3} \\
& f^{\prime \prime}(x)=-\sin x-2 \sin 2 x \\
& f^{\prime \prime}(\pi)=-\operatorname{Sin}(\pi)-2 \operatorname{Sin}(2 \pi)=0
\end{aligned}
$$

Smry ry

$$
\begin{aligned}
& f^{\prime}(x)=-\sin n-2 \sin 2 n \\
& f^{\prime \prime}(\pi)=-\sin (\pi)-2 \sin (2 \pi)=0 \\
& f^{\prime \prime \prime}(\pi)=-\cos \pi-4 \cos 2 \pi=1-4=-3 \neq 0 \\
& \text { af } x=\pi \text { no min n, man }
\end{aligned}
$$

$$
x=\frac{\pi}{3}
$$

$$
f^{\prime \prime}(x)=\rightarrow \sin -2 \sin 2 x
$$

$$
f\left(\frac{4}{3}\right)=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)
$$

$$
f(x)=\sin x(1+\cos x)
$$

$$
\begin{aligned}
& f\left(\frac{5 \pi}{3}\right)=\frac{-\sqrt{3}}{2}(1 \\
& f(0)=0 \\
& f(2 \pi)=0
\end{aligned}
$$

$$
S \cdot M \operatorname{Man}=\left\{-\frac{\sqrt{3}}{2}\left(\frac{3}{4}\right), 0\right\}
$$

38. $(x-1)^{2}(x+1)^{3}$.
39. $\sin x+\cos x$.
40. $x^{1 / x}$.
41. $(\sin x)^{\sin x}$

$$
f(x)=(x-1)^{2}(x+1)^{3}
$$

$\operatorname{Sin}+\operatorname{Cos}$

$f^{\prime}(x)=$

$$
2(n-1)(n+1)^{3}+(n-1)^{2} 3(n+1)^{2}
$$

$$
=(x-1)(x+1)^{2}(2(x+1)+3(x-1))=0
$$

$$
(x-1)(x+1)^{2}(5 x-1)=0
$$ $x=1, x=-1, x=\frac{1}{5}-$

$$
x^{\frac{1}{x}}=e^{\log ^{\frac{1}{x^{n}}}}\left(e^{f(n)}\right)^{111}=e^{f(n)} \cdot(f(n))^{\prime n}
$$

$$
\begin{aligned}
& f^{\prime}(n)= \operatorname{cin} x-\sin z= \\
& \sin n=\operatorname{cin} \\
& \frac{\tan n z 1}{x=\frac{\pi}{4}+n \pi} \\
& n=0 \tan ^{2}
\end{aligned}
$$

$x=1, x=\rightarrow, x=\frac{1}{\infty}$

$$
f(n))^{\prime}=e^{f(n)} \cdot(f(n))^{\prime}
$$

$$
\begin{aligned}
& x=e^{e}=\frac{e^{\frac{1}{x}} \ln x}{f^{\prime}}\left(\frac{1}{e^{x}} \ln x\right. \\
& \left.f^{\prime}(x)=\frac{1}{x} \frac{1}{x}+\left(\frac{-1}{x^{2}}\right)-\log x\right)=\frac{e^{\frac{1}{x} \ln x}}{0}\left(\frac{1-\ln x}{n^{2}}\right)=0
\end{aligned}
$$

$$
\frac{1-\ln u}{n^{2}}=0 \Rightarrow 1-\log x=0 \frac{\operatorname{lo} n^{2}=1}{\operatorname{mze}}
$$

$$
\left(S_{m n}^{\operatorname{Sin} n}\right)^{\sin (\sin n)^{\sin }}=e^{\operatorname{Sin} n \log \sin n}
$$

$\operatorname{Cos}(1+\log \sin x)=0$

$$
C_{\sin x}=0 \quad \lg \sin x=1
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-\sin \frac{\pi}{3}-2 \sin \frac{2 \pi}{3}=\frac{-\sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}=\rightarrow \operatorname{coc} \\
& x=\frac{5 \pi}{3} f^{\prime \prime}\left(\frac{5 \pi}{3}\right)=-\sin \frac{5 \pi}{3}-2 \sin \left(\frac{10 \pi}{3}\right)=\frac{\sqrt{3}}{2}+\frac{2}{2}=\frac{\sqrt{3}}{2}=\operatorname{men}^{3} \quad 3 \pi+\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{gathered}
\cos x(1+\log \sin x)=0 \\
\cos x=0 \\
\lg \sin x=-1 \\
\frac{x=(2 n+1) \frac{\pi}{2}}{x=0 \pm 1 \pm 2} \quad \begin{array}{l}
\sin x=e^{-1} \\
x=\sin ^{-1}\left(e^{-1}\right)
\end{array}
\end{gathered}
$$

Example 1.14 Find a right angled triangle of maximum area with hypotenuse h.
Solution Let x be the base of the right angled triangle. The area of the right angled triangle is

Now,

$$
A(x)=\frac{1}{2} x \sqrt{h^{2}-x^{2}}, 0<x<h . \quad \frac{1}{2}\left(\sqrt{n^{2}-n^{2}}+\frac{1}{2 \sqrt{n^{2}-n^{2}}} \cdot(-2 n)\right)
$$

$$
A^{\prime}(x)=\frac{1}{2}\left[\sqrt{h^{2}-x^{2}}-\frac{x^{2}}{\sqrt{h^{2}-x^{2}}}\right]=\frac{h^{2}-2 x^{2}}{2 \sqrt{h^{2}-x^{2}}}=0 \quad x=\frac{x h}{\sqrt{2}}
$$

Setting $A^{\prime}(x)=0$, we obtain the critical point a $x=h / \sqrt{2}$.

$$
x=\frac{y}{\sqrt{2}}
$$

$h^{2}-2 / \frac{h^{-2}}{x}$

$$
h^{2}-2 \frac{2(12)}{2} \quad x^{0}=\frac{n}{\sqrt{2}}
$$

$f^{\prime}(x$.

$$
\begin{aligned}
& \frac{h^{2}-2 x^{2}}{2 \sqrt{h^{2}-x^{2}}}+\frac{v e}{x}=\frac{y}{\sqrt{2}} \\
& \frac{x+v e}{a}=\frac{h^{-}}{\sqrt{2}}
\end{aligned}
$$

Now, $A^{\prime}(x)>0$ for $x<h / \sqrt{2}$ and $A^{\prime}(x)<0$ for $x>h / \sqrt{2}$.
Therefore, $A(x)$ is maximum when $x=h / \sqrt{2}$ and the maximum area is $A(h / \sqrt{2})=h^{2} / 4$.

